
Formalization of the CRM:
Initial Thoughts

Carlo Meghini

Istituto di Scienza e Tecnologie della Informazione
Consiglio Nazionale delle Ricerche – Pisa

CRM SIG Meeting
Iraklio, October 1st, 2014



Outline

I Overture: why, how, what
I Andante Maestoso: a first-order theory of the CRM
I Adagio: post-reflections
I Allegretto: an OWL ontology of the CRM
I Allegro con spirito: conclusions



Overture: Why doing it?

Communication to other researchers

I Understanding
I Computational Research
I Extension
I Experimentation

Methodological Foundations

I Soundness
I Solidness

Inference

I Querying



How to do it?

Choose your favourite theoretical tool:

I Mathematical Logic
I Computational Logic
I Set Theory
I Category Theory
I you name it

My choice: mathematical logic, because I know it (a bit)

But the are also advantages:

I discourse formalization (syntax and semantics)
I argument formalization (proof)
I many results to use (e.g., description logics)



What did I do?

1. First-order logic translation of the specs
I . . . so that I understand what we are talking about

2. OWL expression of the resulting theory
I . . . so that we can use some tools:

I the Protégé ontology editor
I the Virtuoso triple store
I and maybe more

Some things remain to be done.



Andante Maestoso: First-order logic translation
Translation of class specifications

CRM Specification Translation into first-order logic
Class En c-name Unary Predicate En
A Superclass of B B(x) ⊃ A(x)
A Subclass of B A(x) ⊃ B(x)
A Disjoint from B A(x) ⊃ ¬B(x)

So we have the following two axioms in CRM :

E2(x) ⊃ ¬E77(x)
E18(x) ⊃ ¬E28(x)

Since disjointness axioms propagate down the IsA hierarchy, these two
axioms sanction the disjointness of many classes.



Translation of property specifications

CRM Specification Translation into first-order logic
Property Pn p-name Binary Predicate Pn
P has Domain C P(x , y) ⊃ C(x)
P has Range D P(x , y) ⊃ D(y)
P is a Superproperty of Q Q(x , y) ⊃ P(x , y)
P is a Subproperty of Q P(x , y) ⊃ Q(x , y)



Meta-Properties

CRM Specification Translation into first-order logic
Property Pn p-name Binary Predicate Pn
P has Meta-Property P.n: C P.n(x , y , z) ⊃ [P(x , y) ∧ C(z)]
P is Symmetric P(x , y) ⊃ P(y , x)
P has Asymmetric Meta-Prop. P.n: C P.n(x , y , z) ⊃ [P(x , y) ∧ ¬P.n(y , x , z) ∧ C(z)]

A meta-property is a property whose domain is a property.

Meta-properties are modelled as 3-place predicate symbols:

I the first two places are given to the terms in the domain property,
I the last place is used for the type.

The corresponding axiom includes the assertion of the domain property in
the consequent, thus making it possible to omit it whenever a typing
statment is present.



Shortcuts

CRM Specification Translation into first-order logic
Property Pn p-name Binary Predicate Pn
Weak Shortcut P1 . . . Pn [P1(x , z1) ∧ P2(z1, z2) ∧ . . . ∧ Pn(zn, y)] ⊃ P(x , y)
Strong Shortcut P1 . . . Pn P(x , y) ≡ ∃z1 . . . zn[P1(x , z1) ∧ . . . ∧ Pn(zn, y)]

Shortcuts come in two sorts:

I weak shortcuts, interpreted as implications:

[P24(x , y) ∧ (P23(y , z) ∨ P22(y , z))] ⊃ P51(x , z)

I strong shortcut, interpreted as abbreviations:

P2(x , y) ≡ ∃z1[P41(x , z1) ∧ P42(z1, y)]

Notice that weak shortcuts do not require existential variables, due to the
semantics of conditionals.



Property quantification
The definition of quantifiers is given in terms of two features:

I total property and
I functional property

that can be applied to a property or to its inverse. Therefore a property
or its inverse fall exactly into one of the following cases:

1. total and not functional, i.e., defined on every element of its domain
and can take up more than one value;

2. functional and not total, i.e., at most one value is provided for any
element of its domain;

3. the property is neither total, i.e., some domain elements can miss it,
nor functional, i.e., can take up more than one value for any element
of its domain;

4. both total and functional, i.e.all domain element must have one
value for it, and no more than one.



Translation:

I P is functional: [P(x , y) ∧ P(x , y ′)] ⊃ (y = y ′)
I P is total (on domain A): A(x) ⊃ ∃yP(x , y)
I the inverse of P is functional: [P(x , y) ∧ P(x ′, y)] ⊃ (x = x ′)
I the inverse of P is total (having range A): A(x) ⊃ ∃yP(y , x)

The complete translation of each quantifier can be obtained by
conjoining the translation of the corresponding features. For instance:

I many to many (0,n:0,n): P and its inverse are neither total nor
functional: no axiom

I one to one (1,1:1,1): P and its inverse are total and functional:
A(x) ⊃ ∃yP(x , y)
[P(x , y) ∧ P(x , y ′)] ⊃ (y = y ′)
B(x) ⊃ ∃yP(y , x)
[P(x , y) ∧ P(x ′, y)] ⊃ (x = x ′)



Adagio

By applying the rules above to the specification of classes and properties,
we obtain a set of axioms that make up the CRM first-order theory.

Some pleasant consequences (based on standard logical notions):

I we can talk of the CRM language, as the set of predicate symbols
that occur in the axioms

I we can talk of a CRM knowledge base (KB) as a set of sentences
of the CRM language plus the axioms

I we can talk about a model of a KB, as any interpretation of the
language that satisfies all the axioms and the sentences in the KB

I we can talk about the consistency of a KB
I we can talk about reasoning in CRM because we have an inference

relation KB |= α



We can define formally the interaction with a KB, thereby separating
once for all the theory from its implementation:

I Tell(KB,s), where s is a sentence of our language
I we have a query language: the set of open formulas of the language

I e.g., E55(x) ∧ ∃y [P27(x , y) ∨ ¬P72(x , y)]
I Ask(KB,α), wehre α is a query
I we can use the inference relation to define the answer to a query

We can validate the CRM:

I we can prove that the CRM axioms are consistent (hopefully :-))
I as well as any other property we think it’s there

We can defend the CRM:

I we can challenge the CRM’s detractors to prove what they say



We can formally test whether:

I a language is equivalent to, or less/more powerful than the CRM
I an implementation is sound and complete with respect to the CRM

Nothing particularly surprising, but a firm ground to start building.



Allegretto: The OWL ontology CRM

Encoding the CRM in OWL, as a step towards the implementation of
the CRM.

Not the only way of implementing the CRM, but it allows us to use at no
cost:

I implementations of OWL to manage the creation and the evolution
of KBs (e.g., Tell)

I the SPARQL query language to extract information from instances
of the CRM (e.g., Ask)

I the Protégé ontology editor for fast prototyping of extensions.

it presents at least two advantages:

The CRM ontology is given in the functional notation.



Translation of class specifications

CRM Specification OWL Specification
Class En c-name Declaration(Class(crm:En))
A Superclass of B SubClassOf(B A)
A Subclass of B SubClassOf(A B)

OWL comes with built-in classes whose intended meaning overlaps with
the intended meaning of some CRM classes. So we have some class
mapping axioms.

SubClassOf(crm:E1 owl:Thing)
SubClassOf(crm:E41 rdf:Literal)
SubClassOf(crm:E59 rdf:Literal)
SubClassOf(owl:real crm:E60)



What about using XML Schema datatypes (e.g., xsd:date) for some
CRM classes (eg, E50 Date)?

Class disjointness axioms:

I DisjointClasses(crm:E2 crm:E77)
I DisjointClasses(crm:E18 crm:E28)



Translation of property specifications

OWL distinguishes between two kinds of properties:

I object properties, connecting two individuals, and
I data properties, connecting an individual and a literal.

Therefore it must be determined, for each CRM property, whether it is
encoded as an OWL object or data property.

Since E41 Appellation and E59 Primitive Value are sub-classes of
rdf:Literals, all properties having either crm:E41, or crm:E59, or a
subclass of theirs, are translated as OWL data properties, and all
remaining properties are translated as OWL object properties.

Is this correct?



The easy part:

CRM Specification Translation into OWL
Property Pn p-name Declaration(DataProperty(crm:Pn)) or

Declaration(ObjectProperty(crm:Pn))
P has Domain C ObjectPropertyDomain(crm:Pn crm:C)
P has Range D ObjectPropertyRange(crm:Pn crm:D)
P is a Superproperty of Q SubObjectPropertyOf(crm:Q crm:Pn)
P is a Subproperty of Q SubObjectPropertyOf(crm:Pn crm:Q)
P is Symmetric SymmetricObjectProperty(crm:Pn) ?

P is Transitive TransitiveObjectProperty(crm:Pn)



Meta-properties

A meta-property P.n of a property P associates an instance (a, b) of P
with a value c in the meta-property range.

It can be modeled by a class CP.n each instance of which stands for an
instance of P and is connected to the individual c via meta-property P.n.

Declaration(Class(crm:CP.n))
Declaration(ObjectProperty(crm:P1.n))
Declaration(ObjectProperty(crm:P2.n))
Declaration(ObjectProperty(crm:P.n))
ClassAssertion(crm:CP.n I)
ObjectPropertyAssertion(crm:P1.n I a)
ObjectPropertyAssertion(crm:P2.n I b)
ObjectPropertyAssertion(crm:P.n I c)
ObjectPropertyAssertion(crm:P a b)

a
P

P.n

b

c

CP.n

I

type

P1.n

a

P2.n

b

P.n

c



If the meta-property is asymmetric, then add:

NegativeObjectPropertyAssertion(crm:P.n c I)

The assumption here is that the same anonymous individual I is always
used to reify the instance (a, b) of P.

Bad news: all the above assertions cannot be obtained as implicit
knowledge via axioms, thus their insertion in the ontology has to be
performed procedurally.



Property quantification

The specification of the CRM describe properties, or their inverses, as
functional or total (neither or both).

FunctionalObjectProperty(crm:P) or FunctionalDataProperty(crm:P)
SubClassOf(crm:A ObjectSomeValuesFrom(crm:P owl:Thing))
InverseFunctionalObjectProperty(crm:P)
SubClassOf(crm:A ObjectSomeValuesFrom(ObjectInverseOf(crm:P) owl:Thing))



Shortcuts

P Weak Shortcut P1 . . . Pn is captured by:

SubObjectPropertyOf(ObjectPropertyChain(crm:P1 ... crm:Pn) crm:Pn)

Strong shortcuts are equivalence statements consisting of an if and an
only-if part. For example:

P2 has type: P41 classified, P42 assigned

The only-if part of the equivalence is a weak shortcut:

SubObjectPropertyOf(ObjectPropertyChain(crm:P41 crm:P42) crm:P2)



For each instance (a, b) of the property expressed via the assertion:

ObjectPropertyAssertion(crm:a P2 crm:b)

the if part of the equivalence implies the following assertions:

ObjectPropertyAssertion(crm:a P41 _:a1)
ObjectPropertyAssertion(_:a1 P42 crm:b)

where _:a1 is an anonymous individual.

Bad news: While these assertions can be expressed on an individual basis,
there is no way of obtaining them as implicit knowledge via some axioms.



Allegro con Spirito: Conclusions
CRM is an OWL ontology including the axioms that capture the semantics
of the CRM vocabulary:

I class axioms
I class mapping axioms
I class disjointness axioms
I property axioms

The full expression of the CRM is not possible in OWL, since neither
strong shortcuts nor meta-properties are directly expressible.

The problem is not severe for meta-properties because meta-property
instances never result as implicit knowledge, they always result from
manual insertion.

The problem is much more severe for shortcuts, because in principle a
shortcut property instance may result as implicit knowledge, therefore the
insertion of the corresponding assertions is considerably more difficult.



Next steps

But this is only half of the story.

The other half is translating and computing answers to queries.

Would this work:

OWL encode−→ RDF query−→ SPARQL

?

Provided it does, queries stated against CRM will have smaller answers
than the equivalent queries stated against CRM.

But these would be canonical queries. What about user-friendly queries?

Narratives?


